Prediction of 3D neighbours of molecular surface patches in proteins by artificial neural networks

نویسندگان

  • Sabine Dietmann
  • Cornelius Frömmel
چکیده

MOTIVATION Molecular Surface Patches (MSPs) of proteins are responsible for selective interactions between internal parts of one protein molecule or between protein and other molecules. The prediction of the neighbours of a distinct Secondary Structural Element (SSE) would be an important step for protein structure prediction. RESULTS Based on a computational analysis of complementary molecular patches of SSEs, feed-forward Neural Networks (NNs) are trained on a large set of helices for predicting the neighbours of given MSPs. Accuracy of prediction is 96% if only two types of neighbours: solvent or protein are considered, yet drops to 81% for three types of neighbours: (1) solvent, (2) helix/strand or (3) coil. Implications of the method for the prediction of protein structure and subunit interaction are discussed. As a special test case, the structurally equivalent helices of monomeric myoglobin and the homologous subunits of tetrameric haemoglobin are compared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Prediction of polyvinyl alcohol (PVOH) properties synthesized at various conditions by artificial neural networks technique

In this research samples of PVOH were synthesized at various reaction conditions (temperature, time, and amount of catalyst). First at 25˚C and 45˚C and constant catalyst weight samples of PVOH were prepared with different degree of hydrolysis at various times. For investigation of the effects of temperature, at times 20 and 40 min and constant weight of catalyst PVOH was prepared at various te...

متن کامل

The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Artificial Neural Networks Analysis Used to Evaluate the Molecular Interactions between Selected Drugs and Human Cyclooxygenase2 Receptor

  Objective(s): A fast and reliable evaluation of the binding energy from a single conformation of a molecular complex is an important practical task. Artificial neural networks (ANNs) are strong tools for predicting nonlinear functions which are used in this paper to predict binding energy. We proposed a structure that obtains binding energy using physicochemical molecular descripti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2002